一步步解析python斗牛游戏的概率

1、把牌中的jqk都拿出来

2、每个人发5张牌

3、如果5张牌中任意三张加在一起是10的 倍数，就是有牛。剩下两张牌的和的10的余数就是牛数。

4条 > 3条 > 牛十 > 牛九 > …… > 牛一 >没有牛

python源代码：

# encoding=utf-8
__author__ = ‘kevinlu1010@qq.com’
import os
import cpickle
from copy import copy
from collections import counter
import itertools
”’

”’
class poker():
”’

”’
def __init__(self, num, type):
self.num = num # 牌数
self.type = type # 花色
class gamepoker():
”’

”’
common_niu = 1 # 普通的牛，即牛一-牛七
no_niu = 0 # 没有牛
eight_nine_niu = 2 # 牛九或牛八
ten_niu = 3 # 牛十
three_same = 4 # 三条
four_same = 5 # 四条
def __init__(self, pokers):
assert len(pokers) == 5
self.pokers = pokers
self.num_pokers = [p.num for p in self.pokers]
# self.weight = none # 牌的权重，权重大的牌胜
# self.money_weight = none # 如果该牌赢，赢钱的权重
self.result = self.sumary()
def is_niu(self):
”’

:return:
”’
# if self.is_three_same():
# return 0
for three in itertools.combinations(self.num_pokers, 3):
if sum(three) % 10 == 0:
left = copy(self.num_pokers)
for item in three:
left.remove(item)
point = sum(left) % 10
return 10 if point == 0 else point
return 0
def is_three_same(self):
”’

:return:
”’
# if self.is_four_same():
# return 0
count = counter([p.num for p in self.pokers])
for num in count:
if count[num] == 3:
return num
return 0
def is_four_same(self):
”’

:return:
”’
count = counter([p.num for p in self.pokers])
for num in count:
if count[num] == 4:
return num
return 0
def sumary(self):
”’

”’
if self.is_four_same():
return gamepoker.four_same
if self.is_three_same():
return gamepoker.three_same
niu_point = self.is_niu()
if niu_point in (8, 9):
return gamepoker.eight_nine_niu
elif niu_point == 10:
return gamepoker.ten_niu
elif niu_point > 0:
return gamepoker.common_niu
else:
return gamepoker.no_niu
def get_all_pokers():
”’

:return:
”’
pokers = []
for i in range(1, 11):
for j in (‘a’, ‘b’, ‘c’, ‘d’):
pokers.append(poker(i, j))
return pokers
def get_all_game_poker(is_new=0):
”’

:param pokers:
:return:
”’
pokers = get_all_pokers()
game_pokers = []
if not is_new and os.path.exists(‘game_pokers’):
with open(‘game_pokers’, ‘r’) as f:
for pokers in itertools.combinations(pokers, 5): # 5代表五张牌
game_pokers.append(gamepoker(pokers))
with open(‘game_pokers’, ‘w’) as f:
f.write(cpickle.dumps(game_pokers))
return game_pokers
def print_rate(game_pokers):
total_num = float(len(game_pokers))
four_num = len([game_poker for game_poker in game_pokers if game_poker.result == gamepoker.four_same])
three_num = len([game_poker for game_poker in game_pokers if game_poker.result == gamepoker.three_same])
ten_num = len([game_poker for game_poker in game_pokers if game_poker.result == gamepoker.ten_niu])
eight_nine_num = len([game_poker for game_poker in game_pokers if game_poker.result == gamepoker.eight_nine_niu])
common_num = len([game_poker for game_poker in game_pokers if game_poker.result == gamepoker.common_niu])
no_num = len([game_poker for game_poker in game_pokers if game_poker.result == gamepoker.no_niu])
print ‘所有牌的组合数：%d’ % total_num
print ‘出现四条的组合数:%d,概率 :%.2f%%’ % (four_num, four_num * 100 / total_num)
print ‘出现三条的组合数:%d,概率 :%.2f%%’ % (three_num, three_num * 100 / total_num)
print ‘出现牛十的组合数:%d,概率 :%.2f%%’ % (ten_num, ten_num * 100 / total_num)
print ‘出现牛九或牛八的组合数:%d,概率 :%.2f%%’ % (eight_nine_num, eight_nine_num * 100 / total_num)
print ‘出现牛一到牛七的组合数:%d,概率 :%.2f%%’ % (common_num, common_num * 100 / total_num)
print ‘出现没有牛的组合数:%d,概率 :%.2f%%’ % (no_num, no_num * 100 / total_num)
def main():
game_pokers = get_all_game_poker() # 658008种
print_rate(game_pokers)
main()

Posted in 未分类